Different Types of Databases: What Should You Know?

Acording to the DB-Engines ranking, four of the most popular database management systems are of the relational type. They do take up the lion's share of the market – hence, they're often also the only ones a beginner is aware of. However, there are multiple types of databases, each representing a different way of handling data storage.

Understanding their distinctions and unique selling points is crucial for making the right choice. We have prepared a detailed guide on database types to help you know your options as the back of your hand.

What came before the modern database

Types of databases: Flat

Latest Coursera Coupon Found:

The early types of databases had rather limited functionalities. At first, computer enthusiasts used what they called flat databases, which were basically plain text files. This means the data has to be of a textual format and somewhat modest length. To mark the start of each new field, the programmer had to type a delimiter – a special character, chosen to define the border (e.g., a comma or a colon). As there are no relations between the fields, a flat database is hard to search and navigate. However, it works for a small amount of data that only needs to be read and not manipulated. To see basic examples of databases of this type, see CSV (Comma Separated Values) files.

In 1960s, IBM introduced hierarchical databases. As the name itself suggests, the records are connected by a tree structure, based on parent-child relationships. One item can only have one parent, while one parent can have multiple children. This was the first step toward relational databases. However, the implicitness of the hierarchical relation does not work well for all types of records, making it tricky to organize data in some cases. To solve this, a decade later Charles William Bachman III presented a more flexible model called network databases. They still had a tree structure, but children could now have multiple parents as well. However, by now network databases are virtually extinct: most companies that used them jumped on the relational database bandwagon as soon as it arrived.

Relational vs. non-relational database

When looking at the modern types of databases, relational ones are clearly the most prominent. Edgar F. Codd coined the term in 1962 while working at IBM. MySQL, PostgreSQL, or SQL Server are all great relational database examples. Their names also contain a hint: to access and manipulate the data, you need to know SQL (Structured Query Language). SQL has well-established standards and allows your data to be easily portable.

When using a relational database, you can store the data in tables that consist of columns and rows. Every row represents an individual record, and a column stands for a field with a data type assigned to it. Tables that contain related information can be linked with primary and foreign keys.

Now, in the recent years, the non-relational databases have experienced some impressive rise as well. The main reason for this is the growing need for unstructured data storage. In the age of big data, we often need to deal with information diversity. Data now can also mean images, videos, and even posts on social media networks. To work with non-tabular data, you need a non-relational database. Developers sometimes refer to them as NoSQL databases: unlike relational ones, they do not support SQL queries.

There are four types of databases that do not use the relational model. Based on your choice, you can store your data as documents, key-value pairs, graphs, or column families.

Document-oriented databases

In a document oriented database (which is often simply called a document store), the data is kept in document collections, usually using the JSON, XML, or BSON formats. One record can hold as much data as you need, in any data type (or types) you prefer – there are no constraints. There is a certain internal structure within a single document, however, it can differ from one document to the other. You can nest them as well.

Out of all the non-relational types of databases, document stores are the most popular. The best example could be MongoDB, which currently has over 400 million downloads globally. Initially introduced in 2008, it is now used by industry giants like Barclays and Bosch. Developers like its smooth learning curve and superior agility. You can use a free Community version and a paid Enterprise one – both run on Windows, Linux, and macOS.

woman with laptop

Key-value databases

As the name itself suggests, each record in this kind of a non-relational database has a key and a value. Similarly to a dictionary, the key can be used to identified the value. It really is as simple as that. Developers mostly use key-value databases when the data they're dealing with is not too complex and speed is a priority. For example, it is a great choice for storing configuration data.

The stored data is assigned no schema, and the database itself is much more lightweight when compared to a relational one. This also makes it one of the best types of databases for embedding. As of 2020, the most popular key-value database is Redis. It was also voted the most loved database in the StackOverflow yearly survey for three years in a row (2017, 2018, and 2020).

Graph databases

Using a graph database, you have two types of data to handle. Nodes stand for the items in the database, and edges define their relationships, also called graphs. At the first glance, graph databases seem similar to the old-timey network databases, and yet there is one distinction. The network databases fell short in terms of abstraction, which is modelled much more professionally in graph databases like Neo4J or Dgraph.

Out of all the types of databases, this one is the best option in cases when the relationships and their analysis is a priority. However, graph databases have one clear disadvantage: while you do need a query language to access the data, you can use neither SQL, nor any other universally adopted approach. The lack of standardization means most of the query languages can only be used in one or a few types of graph databases.

  • Professional service
  • Flexible timetables
  • A variety of features to choose from
Main Features
  • Professional certificates
  • University-level courses
  • Online degree programs
  • Well-established in the industry
  • A wide range of features to choose from
  • University-level courses
Main Features
  • University-level courses
  • Suitable for enterprises
  • Paid Certificates of completion
  • Simplistic design (no unnecessary information)
  • Good quality of courses (even the free ones)
  • A few different features to choose from
Main Features
  • Nanodegree Program
  • Suitable for enterprises
  • Paid Certificates of completion

Column store databases

The last one of the non-relational database types is called a column store database, a column family database, or a wide column store. What makes them a good option for handling big data is fast performance, efficient data compression, and great scalability.

Types of databasesInstead of a schema found in relational databases, column store databases use the keyspace to store the column families. Similarly to a table, a column family contains columns and rows. Yet, there's a clear difference: in this case, a column does not span across all the rows. Instead, it is contained in a row, which also means different rows can have different columns. Apart from columns, each row also has an identifier, called a key, and every column holds a name, a value, and a timestamp. A few good examples of databases using the column family model are Cassandra, Vertica, and Druid.

Types of databases: what's next?

In 2011, Matthew Aslett was the first to use the term NewSQL. What it refers to is the newest generation of data storage solutions: ones that combine the scalability of NoSQL with the ACID-compliance of relational databases. ACID stands for Atomicity, Consistency, Isolation, and Durability – the most crucial principles for data storage. One way to get the best of both worlds is getting rid of the general-purpose ideal and trying to deal with one task perfectly – for example, MemSQL deals specifically with clustered analytics.

According to The Economist, data is the new oil – therefore, it's only natural the choice of database types constantly keeps growing. While relational databases are still the most popular, different cases do require different tools. We hope our detailed guide has shed some light on this topic – after all, understanding various types of databases does makes it easier to make a better choice.

Leave your honest review

Leave your genuine opinion & help thousands of people to choose the best online learning platform. All reviews, either positive or negative, are accepted as long as they’re honest. We do not publish biased reviews or spam. So if you want to share your experience, opinion or give advice - the scene is yours!

Recent User Reviews


Mongo database is such a reliable tool to have at your disposal... agile, fast, huge - a perfect database.. no wonder barclays are using it


since hierarchical databases were introduced, it was all changed... IBM were the game changers in the database game

new SQL

newSQL is the future... forget all the generic old fashioned stuff

i still dont understand

after reading this i still dont understand the difference


was good help trying to get my head around different databases, now for sure I will know which ones are the best to use and their purposes too, great review

graph databases

Neo4J and Dgraph have been the best databases I have used if we're talking about graph ones

finally understood

the difference between relational and non relational database, thanks:)


What's the difference between relational and non-relational databases?

Relational databases allow you to store data in tables that consist of columns and rows and require SQL knowledge. In non-relational databases, you can store your data as documents, key-value pairs, graphs, or column families and they do not support SQL queries.

What are some examples of databases?

Examples of database management systems include MySQL, Microsoft Access, PostgreSQL, SQL Server, Oracle, FileMaker, RDBMS, Clipper, and dBASE. Database management systems control databases, which are organized collections of structured information.

How do you choose which online course sites to review?

We pick online learning platforms according to their market size, popularity, and, most importantly, our users’ request or general interest to read genuine MOOC reviews about certain online learning platforms.

How much research do you do before writing your e-learning reviews?

Our dedicated MOOC experts carry out research for weeks – only then can they say their evaluations for different aspects are final and complete. Even though it takes a lot of time, this is the only way we can guarantee that all the essential features of online learning platforms are tried and tested, and the verdict is based on real data.

Which aspect is the most important when choosing the best online learning platforms?

It wouldn’t be right to pick just one aspect out of the selection: priorities depend on each individual person, their values, wishes, and goals. A feature that’s important to one person can be utterly irrelevant to the other. Anyhow, all users would agree that good quality of the learning material is a must for online learning platforms.

How is this e-learning review platform different from others?

Every MOOC-reviewing platform is unique and has its own goals and values. Our e-learning reviews are 100% genuine and written after performing a careful analysis. That is the goal that a lot of e-learning review sites lack, so we consider it to be our superpower!